
559 

entropy 

T& = (l&f) a : A,WA;-‘A” (1 - Vp)-“s - (i/P’) Pv,' 

The first term on the right-hand side is positive by virtue of the demands imposed on 

@, and the second term by virtue of the reasons already listed. Thus the second law of 
thermodynamics retains its validity for the model Of a viscoelastic fracturing medium. 
Relations (1) , (2), (4) and (8) form a complete system of equations describing the motion of 
a viscoelastic medium with fracture. 

The author thanks G.I. Kane1 for useful discussions. 
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BOUNDS ON CONTROL IN THE LINEAR DYNAMIC OPTIMIZATION PROBLEM 
WITH A QUADRATIC FUNCTIONAL* 

B.N. SOKOLOV 

Some bounds of the region from whh a linear system can go in a 
prescribed time to the origin with a given value of an integral 
functional that is quadratic in control are derived. A bound on the 
required control is given. Conditions are proposed when a controller 
can be designed taking any point from a given bounded region to the 
origin in a prescribed time with control not exceeding the specified 
bound. 

The design of programmed bounded controls that take a linear system in a finite time to 
a prescribed state is considered in /l, 2/. 

Consider a linear controlled system 

z'= AZ+ bv (1) 
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Here x is an n-dimensional vector, A is a constant matrix, b is a vector, and u is the 
scalar control. System (1) is assumed to be completely controllable, i.e., the vectors b, Ab, 

., An-lb are linearly independent /3/. 
Let 2 (0) = z0 be the location of the controlled object at time t0 =0 and u (%. T - t) 

the control that takes the phase vector from z 0 to the origin in time T and such that 

PLO% - I”” (0) > 0. po? = const 
T 

pa (t) = s 12 (2 (t), T - T) dr 

t 

(2) 

Denote by D (pO*, T) the region from which system (1) may reach the origin in time T with 
a value of integral (2) not exceeding pO%. We know /3/ that D (poB, T) is an ellipsoid centred 
at the origin. Let us derive a lower bound on the radius of the region D(poa, T), i.e., find 
the radius of the sphere which is completely inscribed in this region. Reversing the time 
in EC&S.(~), we consider the region D'(p,*,T) reachable from the origin by the system 

z' = -As + bu, I (0) = 0 (3) 

in time T with value of the integral (2) not exceeding pO*. The region D’ clearly coincides 
with D. 

The optimal programmed control ~(0, T-L) that takes system (3) in time T from the 
origin to the boundary of the reachability region D (CL039 T) may be represented in the form 
/3/ 

u (0, T - t) = U (T - 1). U (T - t) = 2’ exp (-A (T - t)) b 

Here exp (-A (T- t))b is the impulse transition function of system (3), and the zero 
inside the parentheses in u indicates that the motion starts at the origin. The vector 1 is 
defined by the right-end boundary conditions and the constraint po2- p'(O)>0 on the value 
of the integral (2) for t= 0 and z (0) = 0. We finally obtain the represention 

u (0, T - t) = &,(i (T - t) I-“*, I = i CJ’ (TI- 7) dz (4) 
ll 

Substituting the control (4) into the equation of motion (3), we use the Cauchy formula 
to find the maximum displacement of the phase point from the origin in the direction 1: 

T 

Gus= s Li(T-T)u(O,T--)dr=pd’i’ 

” 

For the minimum radius R of the reachability region D(ha, T) we thus obtain the equation 

h-VP= mint I, 1 II= 1 (5) 

We will use the following notation: to = 0, tl+l= t!+l, i= 0, 1, . . . . N, and N= IT] is the 
integer part of T. Let us transform and estimate the expression on the right-hand side of 
(5). It is not less than 

N-l %+I N-1 1 

U*(T-=c)&=mq 2 S(Z* sxp (-A(T - $)) exp (A?‘) b)’ df 

i=o 0 

In the last integral, we have made the change of variables s=tJ-~'. The corresponding 
sum of the integrals is given by 

N-1 -1 N-X 

mint 2 S (c;l exp (AZ) b)‘dr (P exp (- A (T -:,)))‘> co 2 mint (1. erp (- A (T - tt)))* 

i=cl 0 i=a 
(9 

5; (I) = I+ erp (-A (T -tJ)/ 1 Z* exp (- A(T -:<)) 1, i = 0, 1.. . . 

III = 1 

and cl, > 0, since system (1) is completely controllable /3/. The second factor in the last 
expression in (6) is 

N--l N-l 

2 r 
maxi (I* e=p(A(T --tt))Pl-' = (fb le=p(A(T-$))U-* (7) 
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Assume that the characteristic values of the matrix A with the maximum real parts a 
have prime elementary divisors (assumption A). Then for P- tt>O we have the bound /4/ 

II =P (A (T - tl )) II < ~1 =P (e (T - Q' (6) 

where the constant C, depends only on the matrix A. Using the bound (8) and inequalities (6) 
and (7), we finally obtain 

N-1 
(9) 

Lenma 1. If the matrix A satisfies assumption A, then the minimum radius R of the 
reachability region D(h’.T) of a completely controllable dynamic system (3) has a lower 
bound (9). If the homogeneous system (1) is stable, then R, increases without limit as T 
increases for fixed PO, and 

R* > Rpa (ILL. T) = ~'coc~-' IT1 (9 

Proof. The first proposition follows from the previous bounds. From the stability of 
system (1) it follows that /4/ either a=0 and assumption A holds or a<O. In any event, 
the bound (8) holds with CC= 0. For a=O, relationship (9) reduces to the bound (lo), 
which determines the corresponding increase in R,. 

Let us now obtain a bound on the programmed control II (0, T - t) that takes 
point of sytem (3) from the origin to the boundary of the region D(h’,T), From 
(4) for T=1,2,... we have the bound 

N-11 
ju(O, T -t)l /h < [mint mint(6* exp(At)b)* 2 S(c* e~p(A(t~+~))b)* dr]-‘a 

i=o 0 
c* = I* exp (-AT)/ 1 P exp (-AT)\ 

the phase 
expression 

Here we have made the change of variables tl + 5' = r in the integrals and then dropped 
the prime. 

The right-hand side of the last inequality does not exceed 

N-1 

etiB [mint z. [IUP.X~~ (v exp (A (t - ti)) b)‘]-I]-“* = 

N--l 
~;“~rnax~ { *& 1) exp (A (t - tJ) b U-n}-“r 

The expression in braces on the right-hand side of the last relationship for fixed t 
increases as Xv= [T] increases. The sum is therefore a minimum when it consists of a single 
term, i.e., when N= 1. Using the bound (a), we thus obtain for t E CO, Tl 

1 u (0, T- t)l Po-'<~,~~maxJexp (A@ bn<co(‘ncl/ b 1 max,exp (a~), ZE (0.1) (11) 

If system (1) is stable, i.e., c<O, then the maximum on the right-hand side of the 
bound (11) is attained for T= 0. We finally have 

1 u (0, T - t) 1 < uo = p&“cl I b 1, t E [O, Tj (12) 

Lemma 2. Suppose we are given a family (4)of ccontrols U(O, T- 0 that takes the com- 
pletely controllable system (3) from the origin to the boundary of the reachability region 
D (110'. T) in time T>i. Then there exists a constant Q. independent of T and po, such 
that for all controls of the family (4) for all TV IO, T] we uniformly have lu(O, T- t)(d%= 
WV 

The proof follows from the bound (11) or the improved bound (12) if system (1) is stable. 
In the latter case, ep = c&"* ( b I. 

We know /3/ that synthesis in the linear problem with a quadratic functional realizes 
a linear controller with time-dependent feedback coefficients. On optimal trajectories, the 
values of the feedback control are indentical with the programmed control. This leads to the 
following theorem. 

Theorem. Assume that the dynamic system (1) is completely controllable and the correspond- 
ing homogeneous system is stable. Then for any constants uO and 17, specified in advance, 
we can select a termination time T such that the optimal linear controller corresponding to the 
minimum of the integral (2) takes the system (1) from any phase state ~o:I~l<~~, to the 
origin with a control not exceeding UO:I ub(t),T- t)j <Q. 
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The proof follows from Lemmas 1 and 2. Given the constraint I+, we obtain from inequality 
(12) the value h = u,cy’C;‘I b/-l, which guarantees the required control bound for any t E [O, Tl, 
T>l. Then, using the bound (lo), we compute R, and the time T that ensures the condition 
I =o I< Ro (PO. U. To this end, it suffices to take T > ) zoIB. po-%o-lc,a+ 1. Substituting the 
corresponding value of PO. we finally obtain T > 1 z. ~*~,,-%~‘%~~(b (I + 1. 

Example. Consider a point that moves with a bounded velocity along the horizontal 
directrix. Assume that the velocity of the point may change instantaneously within given 
bounds. There are m pendulums of various lengths attached to the point. Controlling the 
velocity of the point, it is required to move the system to the origin so that all the oscil- 
lations are damped. It can be verified that this system is stable and completely controllable 
(the controllability is proved in /5/). Therefore, for any bounded region in phase space, 
we can construct by our theorem a linear velocity controller which takes the system from any 
initial position in this region to the origin. The control on any of the realized trajec- 
tories will not exceed the specified value. 

Remarks. 7'. If system (1) is unstable, then a control bounded by a given constant 
that takes a phase point to the origin does not necessarily exist. As an example, consider 
the equation t'= z+ IL, 1 ul<uo, ZE RI. For I z. I > uo, the required control obviously does not 
exist. The conditions of the theorem are therefore very close to necessary. 

2". All the bounds and conclusions remain valid in the case when u is a vector and b 
is an appropriately dimensioned matrix. 
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A SPECIAL CASE OF HYDRbDYNAMIC STABILITY* 

A.G. BERSHADSKII 

The following dependence of the amplitude of the velocity perturbations 
on the supercriticality parameter: A _ $1. is typical of the case of the 
selfexcited oscillations which are generated when there is instability 
in the stationary flows of a viscous incompressible fluid. There is, 
however, a special case (it is investigated in this note) when this 
dependence is linear (as in the case of bifurcations in a stationary 
regime /l/l. A condition is obtained for the existence of such 
selfexcited oscillations together with an algorithm which enables one 
to find their frequency and amplitude. In the case of these self- 
excited oscillations there is a further difference from conventional 
hydrodynamic selfexcited oscillations in that sub- and supercritical 
regimes coexist in them and, at the same time, the subcritical 
selfexcited oscillations turn out to be unstable while the 
supercritical selfexcited oscillations are stable. 

Vrikl.Matem.Mekhan.,54,4,681-683,1990 


